Д. Канеман. «Думай медленно... Решай быстро»

Часть IV. Выбор

25. Ошибки Бернулли

В начале 1970-х годов Амос вручил мне брошюру швейцарского экономиста Бруно Фрея, где обсуждались психологические аспекты экономической теории. Я помню даже цвет обложки – темно-красный. Бруно Фрей почти и не вспоминает эту статью, но я все еще могу по памяти воспроизвести первое предложение: «Агент экономической теории рационален, эгоистичен, и его вкусы не меняются».

Я поразился. Мои коллеги-экономисты работали в соседнем здании, но я не предполагал, насколько разнятся наши интеллектуальные миры. Для психолога самоочевидно, что человек ни полностью рационален, ни полностью эгоистичен и что его вкусы никоим образом не ста- бильны. Казалось, что наши науки изучают представителей двух разных видов; эти виды пове- денческий экономист Ричард Талер назвал впоследствии «эконы» и «гуманы».

В отличие от эконов, изучаемые психологами гуманы обладают Системой 1. Их взгляд на мир ограничен информацией, доступной в настоящий момент (принцип WYSIATI), и, сле- довательно, они не могут быть столь же последовательными и логичными, как эконы. Иногда они щедры, часто горят желанием помочь группе, в которую входят, и зачастую не ведают, что им понравится в следующем году или даже завтра. Так появилась возможность интересного диалога между двумя областями науки. Я и не предполагал, что этот диалог определит мою карьеру.

Вскоре после того, как Амос показал мне статью Фрея, мы решили избрать темой нашего следующего проекта изучение принятия решений. Я почти ничего об этом не знал, но Амос – эксперт и звезда в этой области – сказал, что все объяснит. На выпускном курсе он стал соав- тором учебника «Математическая психология» и предложил мне прочесть оттуда несколько глав – в качестве введения.

Вскоре выяснилось, что предметом нашего изучения станет отношение человека к выбору в условиях риска и что нам предстоит найти ответ на конкретный вопрос: чем руко- водствуется человек в выборе между двух простых игр или между игрой и гарантированным результатом?

Простые игры (например, «вероятность 40 % выиграть 300 долларов») для исследовате- лей принятия решений – то же, что дрозофилы для генетиков. Выбор между такими играми представляет собой простую модель, обладающую всеми свойствами более сложных случаев принятия решений, которые стараются понять ученые. В игре отражен тот факт, что послед- ствия выбора никогда не бывают определенными. Даже якобы гарантированные исходы оста- ются неопределенными: подписывая договор на покупку квартиры, вы не знаете, за какую цену сможете ее впоследствии продать, и не можете предвидеть, что сын соседа вскоре начнет брать уроки игры на трубе. Любой значительный выбор, который мы делаем в жизни, содержит неко- торую неопределенность – именно поэтому исследователи принятия решений надеются, что данные, полученные при изучении смоделированных ситуаций, можно будет применить и в более интересных повседневных случаях. Но, разумеется, главная причина того, что теоретики изучают простые игры, – этим занимаются другие теоретики.

В данной области существует теория ожидаемой полезности (выгоды), на которой стро- ится модель рационального индивида и которая по сей день остается самой важной теорией социальных наук. Теория ожидаемой полезности не задумывалась как психологическая модель; она представляла логику выбора, основанную на элементарных правилах (аксиомах) рациональности. Рассмотрим пример.

Если вы предпочитаете яблоко банану,
то
вы предпочтете 10 %-ную вероятность выиграть яблоко 10 %-ной

вероятности выиграть банан.

Вместо яблока и банана можно взять любой объект выбора (включая игры), а вместо 10 % – любое значение вероятности. Математик Джон фон Нейман, один из величайших мыслите- лей ХХ века, и экономист Оскар Моргенштерн вывели свою теорию рационального выбора между играми из нескольких аксиом. Экономисты рассматривают двоякое применение тео- рии ожидаемой полезности: в качестве логики, предписывающей, как надо делать выбор, и в качестве описания того, как выбор делают эконы. Однако мы с Амосом, будучи психологами, начали изучение того, как гуманы делают рискованный выбор, не выдвигая никаких предпо- ложений об их рациональности.

Мы продолжали проводить долгие часы в ежедневных беседах – иногда в своих кабине- тах, иногда в ресторане, часто во время длительных прогулок по тихим иерусалимским улоч- кам. Как и при изучении суждений, мы начали с тщательной проверки собственных интуи- тивных предпочтений. Мы постоянно придумывали простые задачи по принятию решений и спрашивали себя, что бы мы предпочли.

Что бы вы предпочли?

А. Подбросить монетку. Если выпадет орел, вы получаете 100 долларов, если решка – не получаете ничего.

Б. Гарантированно получить 46 долларов.

Мы не пытались найти самый рациональный или самый выгодный выбор; мы хотели определить интуитивный выбор – тот, который сразу кажется привлекательным. Мы почти всегда выбирали один и тот же вариант. В данном примере мы оба выбрали бы гарантирован- ные деньги; возможно, и вы поступили бы так же. Когда мы уверенно соглашались в выборе, то считали – и, как выяснилось, почти всегда правильно, – что большинство людей разделит наш выбор, и двигались дальше, словно получив строгие доказательства. Конечно же, мы знали, что в дальнейшем нам придется подтвердить свои догадки, но в роли одновременно и экспе- риментаторов, и испытуемых мы могли быстро двигаться вперед.

Через пять лет после начала исследования игр мы завершили эссе под названием «Тео- рия перспектив: анализ принятия решений в условиях риска». Наша теория весьма напоми- нала теорию полезности, но отходила от нее в основе. Самое главное, наша модель была чисто описательной; ее цель заключалась в документировании и объяснении систематических нару- шений аксиом рациональности при выборе между играми. Мы отправили наше эссе в журнал Econometrica, публикующий значительные теоретические статьи по экономике и теории при- нятия решений. Выбор издания сыграл важную роль: опубликуй мы тот же материал в пси- хологическом журнале, он вряд ли что-то изменил бы в экономике. Впрочем, наше решение не было навеяно желанием повлиять на экономику; в журнале печатались лучшие статьи по теории принятия решений, и нам хотелось оказаться в такой выдающейся компании. В этом выборе, как и во многих других, нам повезло. Теория перспектив оказалась нашей самой зна- чительной работой, а наша статья остается одной из самых цитируемых в социальных науках. Два года спустя мы опубликовали в Science сообщение об эффектах фрейминга – значитель- ном изменении предпочтений, возникающем иногда при несущественных изменениях форму- лировки задачи.

За первые пять лет изучения принятия решений мы установили десяток фактов, относя- щихся к выбору между рискованными вариантами. Некоторые из обнаруженных фактов про- тиворечили теории ожидаемой полезности. Некоторые явления наблюдались и раньше, какие- то оказались новыми. Для объяснения собранных наблюдений мы создали теорию, модифици- рующую теорию ожидаемой полезности, и назвали ее теория перспектив.

Мы использовали подход из области психофизики – направления психологии, основан- ного немецким психологом и мистиком Густавом Фехнером (1801–1887). Фехнер посвятил свои исследования проблеме взаимоотношений души и материи. С одной стороны, суще- ствуют изменяемые физические величины: например, сила света, частота звука или количе- ство денег. С другой стороны, есть субъективное восприятие яркости, высоты или ценности. Таинственным образом изменение физической величины вызывает изменение интенсивности или качества субъективного ощущения. Целью Фехнера стало найти психофизические законы, связывающие субъективные величины в мозгу наблюдателя с объективными величинами мате- риального мира. Он предположил, что во многих случаях функция имеет логарифмический вид – то есть увеличение интенсивности стимула в определенное число раз (например, в 1,5 или в 10) всегда приводит к соответствующему увеличению по психологической шкале. Если увеличение силы звука с 10 до 100 единиц физической энергии увеличивает психологическую интенсивность на 4 единицы, то дальнейшее увеличение интенсивности стимула от 100 до 1000 также повысит психологическую интенсивность на 4 единицы.

Ошибка Бернулли

Как хорошо понимал Фехнер, он не первый пытался найти функцию, связывающую пси- хологическую интенсивность с физической силой стимула. В 1738 году швейцарский ученый Даниил Бернулли предвосхитил объяснения Фехнера и применил их к отношениям между психологической ценностью или желательностью денег (сейчас называемой «полезность») и реальным количеством денег. Он утверждал, что подарок в 10 дукатов обладает той же полез- ностью для человека, уже имеющего 100 дукатов, что и 20 дукатов – для обладателя 200 дука- тов. Бернулли был прав, разумеется: мы обычно говорим об изменениях дохода в процентах, например, когда говорим «ей дали 30 % прибавки». Идея в том, что 30 %-ная надбавка вызы- вает схожую психологическую реакцию у богатого и бедного, а прибавка 100 долларов – нет. Как в законе Фехнера, психологическая реакция на изменение размера богатства обратно про- порциональна исходному капиталу; отсюда следует вывод, что полезность – логарифмическая функция богатства. Если функция точна, одна и та же психологическая дистанция отделяет 100 тысяч долларов от 1 миллиона, а 10 миллионов – от 100 миллионов долларов.

Бернулли, основываясь на психологическом представлении о полезности богатства, пред- ложил радикально новый подход к оценке игр, ставший предметом обсуждения среди матема- тиков его времени. До Бернулли математики предполагали, что игры оцениваются по их ожи- даемой ценности: средневзвешенному значению возможных исходов, причем каждый исход взвешивается по его вероятности. Например, для утверждения:

«80 %-ная вероятность выиграть 100 долларов и 20 %-ная вероятность выиграть 10 долларов»

ожидаемая ценность составит 82 доллара (0,8 × 100 + 0,2 × 10).

Теперь спросите себя: что вы предпочли бы получить в подарок – такую игру или гаран- тированные 80 долларов? Почти все выберут гарантированные деньги. Если бы человек под- считал неопределенные перспективы по ожидаемой ценности, он выбрал бы игру, поскольку 82 доллара больше, чем 80. Бернулли указал, что в действительности игры так не оценивают.

Бернулли обнаружил, что, как правило, люди не любят рисковать (из-за шанса получить

худший из возможных исходов); если предложен выбор между игрой и суммой, равной ожидаемой ценности игры, то обычно выбирают гарантированную сумму. На самом деле прини- мающий решение человек, склонный к неприятию риска, выберет гарантированную сумму – пусть даже меньшую, чем ожидаемая ценность, – по сути застраховываясь от неопределенно- сти. Для объяснения этого неприятия риска Бернулли придумал психофизику за сто лет до Фехнера. Его идея была проста: решения базируются не на денежной, а на психологической ценности исходов, на их полезности. Психологическая ценность игры, таким образом, не равна средневзвешенному значению ее исходов в денежном выражении; это – среднее от полезностей исходов игры, взвешенных по их вероятности.

Таблица 3 показывает версию функции полезности, рассчитанной Бернулли; в ней пред- ставлены полезности разных уровней богатства, от 1 до 10 миллионов. Можно увидеть, что добавление 1 миллиона к богатству в 1 миллион вызывает увеличение полезности на 20 пунк- тов, но добавление 1 миллиона к капиталу в 9 миллионов добавляет только 4 пункта.

Таблица 3

Бернулли предположил, что (пользуясь современным языком) уменьшение предельной ценности богатства объясняет неприятие риска – обычный выбор людей в пользу гарантиро- ванной суммы по сравнению с благоприятной игрой с равной или чуть большей ожидаемой ценностью. Рассмотрим этот выбор.

Равные шансы получить 1 миллион или 7 миллионов – полезность: (10 + 84)/2 = 47
или
Гарантированно получить 4 миллиона – полезность: 60.

Ожидаемая ценность игры и «гарантированной суммы» равны в денежном выражении (4 миллиона), но психологическая полезность этих вариантов различна из-за снижающейся полезности богатства: увеличение полезности при росте богатства с 1 до 4 миллионов – 50 единиц, но такое же увеличение с 4 до 7 миллионов увеличивает полезность богатства только на 24 единицы. Полезность игры составляет 94/2 = 47 (полезность двух исходов, вероятность каждого – 1/2). Полезность 4 миллионов – 60. Поскольку 60 больше, чем 47, человек, исполь- зующий эту функцию полезности, предпочтет гарантированные деньги. Открытие Бернулли состояло в том, что человек, принимающий решение в рамках уменьшающейся предельной полезности богатства, будет избегать риска.

Эссе Бернулли – пример блестящей лаконичности. Он применил новое понятие – ожи- даемую полезность (названную им «моральное ожидание»), чтобы подсчитать, сколько согла- сится заплатить купец в Санкт-Петербурге за страхование груза пряностей из Амстердама, если «будет знать, что в это время года из ста кораблей, идущих из Амстердама в Санкт-Петербург, пять пропадают». Функция полезности пояснила, почему бедные люди покупают страховку и почему богатые продают ее беднякам. Как видно из таблицы, потеря одного миллиона озна- чает потерю 4 пунктов полезности (со 100 до 96) для того, у кого есть 10 миллионов, и гораздо более крупную потерю – 18 пунктов (с 48 до 30) – для обладателя 3 миллионов. Более бедный человек охотно заплатит за страховку, чтобы переложить риск на более богатого – в этом и состоит суть страхования. Бернулли также предложил решение знаменитого «санкт-петербург- ского парадокса», по которому люди, которым предлагают игру с бесконечной ожидаемой ценностью (в денежном выражении), готовы поставить только небольшую сумму. Что еще важнее, анализ подходов к риску в терминах предпочтений богатства выдержал проверку временем: он актуален в экономической науке почти триста лет спустя.

Долгая жизнь этой теории весьма примечательна, несмотря на то что в ней содержатся серьезные ошибки. В том, что теория выставляет напоказ, обнаружить ошибки сложно; они прячутся в том, что замалчивается или подразумевается. Например, рассмотрим такие ситуа- ции:

Сегодня у Джека и Джилл есть по 5 миллионов у каждого. Вчера у Джека был 1 миллион, а у Джилл – 9 миллионов. Одинаково ли они довольны? (Одинаковая ли у них полезность?)

Теория Бернулли полагает, что именно полезность богатства делает людей счастливее или несчастнее. У Джека и Джилл одинаковое богатство, так что теория утверждает, что они должны испытывать одинаковое удовольствие; однако не нужно обладать глубокими познани- ями в области психологии, чтобы понять, что Джек сегодня ликует, а Джилл – в отчаянии. Мы даже знаем, что Джек был бы намного счастливее Джилл, если бы у него сегодня оказалось 2 миллиона, а у Джилл – 5. Так что теория Бернулли ошибается.

Радость, которую испытывают Джек или Джилл, определяется последними изменениями их богатства относительно различных состояний, определяющих точку отсчета (1 миллион для Джека, 9 миллионов для Джилл). Эта зависимость от точки отсчета присутствует в ощущениях и восприятии. Один и тот же звук может восприниматься как очень громкий или довольно тихий – в зависимости от того, предшествовал ли ему шепот или рев. Чтобы предсказать субъ- ективное ощущение громкости, мало знать абсолютную энергию; нужно знать и исходный звук, с которым сравнивается текущий. Точно так же необходимо знать фон, чтобы предсказать, покажется ли серое пятно на странице темным или светлым. А прежде чем предсказывать полезность какой-то суммы, необходимо знать точку отсчета.

Еще один пример слабых мест теории Бернулли. Рассмотрим Энтони и Бетти.

Текущее состояние Энтони – 1 миллион. Текущее состояние Бетти – 4 миллиона.

Им обоим предлагают выбрать между игрой и гарантированной суммой.

Игра: равные шансы иметь в итоге 1 миллион или 4 миллиона или

Гарантированная сумма: 2 миллиона.

С точки зрения Бернулли, Энтони и Бетти стоят перед одним и тем же выбором: ожида- емое богатство составит 2,5 миллиона в случае игры и 2 миллиона, если они выберут гаран- тированные деньги. Бернулли, таким образом, предположил бы, что Энтони и Бетти сделают одинаковый выбор; но это предсказание неверно. Здесь теория не срабатывает, потому что не учитывает различные точки отсчета, с которых Энтони и Бетти оценивают варианты. Пред- ставьте себя на месте Энтони и Бетти, и вы быстро сообразите, что текущее состояние значит очень много. Вот примерный ход их мыслей:

Энтони (у которого сейчас 1 миллион): «Если я выберу гарантированные деньги, мое состояние удвоится. Это очень заманчиво. С другой стороны, я могу сыграть – с равными шансами получить вчетверо больше или не выиграть ничего».

Бетти (у которой 4 миллиона): «Если я выберу гарантированные деньги, я потеряю половину состояния – и это ужасно. С другой стороны, я могу сыграть – с равными шансами потерять три четверти состояния или не потерять ничего».

Легко понять, что Энтони и Бетти стоят перед разным выбором, потому что гарантиро- ванное обладание 2 миллионами принесет Энтони радость, а Бетти – горе. Обратите также внимание, как отличается гарантированный исход от худшего исхода игры: для Энтони это выбор между удвоением богатства и нулевым выигрышем; для Бетти – выбор между потерей половины состояния и потерей трех четвертей. Бетти, скорее всего, попытает счастья, как и все, кто выбирает из двух зол. В таком изложении истории ни Энтони, ни Бетти не рассуждают в терминах размера богатства; Энтони рассуждает о выигрыше, а Бетти – о потерях. Психо- логические исходы, которые они рассматривают, совершенно различны, хотя возможные раз- меры богатства одинаковы.

Поскольку в модели Бернулли отсутствует понятие точки отсчета, теория ожидаемой полезности не отражает очевидного факта: исход, благоприятный для Энтони, плох для Бетти. Эта модель может объяснить неприятие риска Энтони, но не может объяснить принятие риска и выбор игры у Бетти – поведение, часто наблюдаемое у предпринимателей и военачальников, когда приходится выбирать из двух зол.

Все это вполне очевидно, так ведь? Легко представить, что и сам Бернулли мог бы при- думать аналогичные примеры и создать для их объяснения более сложную теорию; почему-то он этого не сделал. Можно также представить, что коллеги-современники спорили с ним или ученые поздних времен высказывали сомнения, читая эссе; почему-то и они этого не сделали.

Проблема в том, как объяснить долговечность концепции полезности исходов, легко опровергаемой очевидными примерами. По-моему, это следствие недостатка мышления, при- сущего ученым, который я неоднократно замечал и у себя. Подобная «вызванная теорией слепота» возникает, когда принятую теорию начинают использовать в качестве инструмента мышления – становится невероятно сложно заметить недостатки этой теории. Встретив наблю- дение, не укладывающееся в модель, вы предполагаете, что ему есть прекрасное объяснение, которое вы случайно пропустили. Все сомнения вы трактуете в пользу теории, доверяя сооб- ществу специалистов, принявших ее. Многие ученые, размышляя над примерами, сходными с историями Энтони и Бетти или Джека и Джилл, вскользь замечали, что эти истории не согла- суются с теорией полезности, однако не развивали идею до логического конца и не говорили: «Теория имеет серьезный недостаток: она игнорирует факт, что полезность зависит от истории богатства человека, а не только от текущего состояния». Как обнаружил психолог Дэниел Гил- берт, неверие – тяжкий труд, а Система 2 быстро утомляется.

Разговоры об ошибках Бернулли

«Он был очень доволен премией в 20 тысяч долларов три года назад, но его зарплата с тех пор выросла на 20 %, так что для получения той же выгоды ему нужна премия побольше».

«Оба кандидата готовы согласиться на предложенную зарплату, но они получат неодинаковое удовлетворение, потому что у них разные точки отсчета. У нее сейчас зарплата выше».

«Она подала на алименты. Вообще-то она согласилась бы на мировую, но он хочет решить вопрос в суде. И неудивительно: она в любом случае выиграет, поэтому уклоняется от риска. Для него, с другой стороны, все варианты плохие, и он готов рискнуть».

Добавить комментарий

CAPTCHA на основе изображений